November 28th | Meetup: AI in finance 🦾 | Register now
Data & AI Services

MLOps

Train, deploy, and confidently operate your machine learning models by leveraging rock-solid, cost-effective, and easy-to-use cloud solutions supported by Chaos Gears' experts.

Solutions

We offer professional support throughout every stage of your data science project. We help design, build, deliver and maintain cost-effective machine learning platforms, providing any and all services you might need.

Exploratory data analysis

We provide notebook-based research environments without memory or computing power limitations. All experiments and models remain ready for use long after creation.

Model training and fine-tuning

We help you leverage the power of compute clusters with GPUs and dedicated filesystems to train and fine-tune even the largest models.

Model deployment

From classic autoscaling APIs, through serverless and asynchronous APIs, to scheduled, large-scale one-off jobs — deploy hundreds of models at a time, in a cost-efficient way.

Model monitoring

We ensure that models are working as intended by monitoring the reasonableness of their results and consistency of their data distribution — on top of standard metrics like resource utilization, of course.

Automation

We use dedicated CI/CD tools to automate training, deployment and monitoring. New prototypes and models quickly find their way to test and production environments.

Large Language Models (LLMs)

We combine top-tier LLMs with a reliable AWS backbone and tools such as LangChain, LLamaindex and vector databases to revolutionize your business processes.

Technologies

State-of-the-art tech

We are flexible, but reliability is paramount. The solutions we work with are industry-proven and well-established, regardless if AWS-based or open-source.

Amazon SageMaker
AWS Managed service

Cost-optimized MLOps platform for faster implementation

We rely on services from the Amazon SageMaker family, which has parts dedicated to each phase of your data science projects.

  • One of the most mature cloud technologies in the ML area
  • Low solution maintenance costs
  • Rapid platform deployment
  • Does not require a dedicated maintenance team
Contact us
Kubernetes
Kubernetes

Independence from cloud providers

Alternatively, we use open-source technologies such as Kubeflow, MLflow or Seldon Core implemented on the Kubernetes platform in AWS.

  • No vendor lock-in
  • A solution applicable in hybrid environments
  • Highly customizable and extensible for larger organizations
  • Easy migration to another cloud solution in the future
Contact us
01

Solution architecture

We help you set the goals, values and essential success criteria. Your data teams can rely on our support with business problem modeling in terms of machine learning and algorithm prototypes.

02

Model development

With our exploratory data analysis ecosystem, we supply you with tools to train, test and tune machine learning models in an automated way.

03

Production cycle

Your models operate in a production environment. We continuously monitor and verify whether they meet key assumptions and goals through A/B tests and retraining algorithms based on the most recent data.

Plan
Delivery
Maintenance

We start with a series of initial meetings to get to know the team and the operational problems it faces in the field of data analysis, as well as the key goals it aims to achieve.

Together, we then proceed to select suitable technologies and create an implementation schedule along with the project's long-term roadmap.

We establish a list of required components, prioritize it and define the timeframe for the delivery of each component (e.g. registry of experiments and models, feature store, research environment based on notebooks, automation and orchestration platform, or model deployment service).

You are guaranteed a high level of cloud environment security by building solid cloud foundations for your operations through the creation and configuration of AWS accounts, network services, budget alerts and access management.

Then, in accordance with the set priorities, we deliver the individual components of the MLOps platform. In the case of unknown or unspecified requirements, we create Proof of Concept solutions first. This allows us to verify if the tool's functionality meets your needs.

Quality control is kept through regular contact with the client's data science team to collect further requirements for the platform. We document the process of implementing components on an ongoing basis, demonstrate the products used and conduct training across the whole process on a regular basis.

Along with the management of your production environment, we provide comprehensive maintenance services ensuring that data analysis teams can work efficiently and effectively.

Tools are updated on an ongoing basis, as well as modifying and optimizing the platform when required.

We also correct any errors that were not detected during the tests.

Certificates

Expert know-how

Our engineers are certified by AWS as experts in their field. In fact, our Data & AI team is lead by a prestigous AWS Machine Learning Hero.

AWS Certified - Machine Learning SpecialtyAWS Certified - Solutions Architect ProfessionalAWS Certified - DevOps Engineer ProfessionalAWS Certified - Security Specialty
Success stories

Case studies

Clariant - GenAI case study
How Clariant built a generative AI platform on AWS

Learn how Clariant, a global specialty chemicals leader, improved its productivity thanks to GenAI and help from Chaos Gears' AI experts.

Read this study →
Healthcare - MLOps case study
Revolutionizing mental health: AI assistance in psychotherapy

Learn how an AI assistant built by Chaos Gears helped Provocare automate repetitive tasks and focus on psychotherapy instead.

Read this study →
Healthcare - MLOps case study
How to introduce MLOps in healthcare

Learn how an innovative, HIPAA-compliant machine learning platform supports a healthcare leader in advancing global medical research.

Read this study →

Deploy your own generative AI platform

Make full use of your organization's data without the privacy and security concerns surrounding popular third-party platforms.

Here's how we can help

Complementary Data & AI services

Generative AI

  • Question answering
  • Content generation
  • Private data sources & Retrieval-Augmented Generation
  • Virtual assistants and chatbots
Learn more →

Data Engineering

  • Collection and storage
  • Processing and cataloging
  • Access management
  • Automation
Learn more →

Let's talk about your project

We'd love to answer your questions and help you implement efficient machine learning pipelines.

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
We'd like to keep improving our site - and your anonymous analytical cookies would help with that. Is that OK with you?
Analytics
These items help us understand how our website performs, how visitors interact with the site, and whether there may be technical issues. The information we collect for this purpose is fully anonymous.
Confirm